COURSE SYLLABUS


TITLE: THERMODYNAMIC STABILITY OF THIN FILMS AND MICROSTRUCTURES

INTRODUCTION:

In the realm of microelectronic devices and microstructures it is not generally appreciated that very high levels of stress can be created by an inappropriate choice of materials or process steps. This often leads to thermo-mechanically unstable devices which fall apart or have an extreme sensitivity to processing conditions and are thus unmanufacturable at reasonable cost. These types of problems most often occur when a development group is pushing toward a new technology or making changes in a known technology to achieve improved performance.

A major goal of this course will be to acquaint the student with the genesis and pathology of stress buildup in microstructures and the consequences which can occur such as: delamination, cracking and warping behavior. Though focus will be on problems from the microelectronics industry, the techniques employed will be generally applicable to any type of laminated or multicomponent structure such as paint and magnetic ink coatings or shrink fit assemblies.

Many times stress related phenomena can spell the demise of otherwise promising R&D projects. By being aware of these problems from the outset, steps can be taken to avoid their occurrence and thus afford a greater chance of success for the overall project.

Examples will be drawn from the instructors extensive experience in the microelectronics industry troubleshooting "real world" stress problems.

OBJECTIVE:

The course material will concentrate on the following concepts:

  1. Understanding the nature of stress buildup in a structure and its relation to material properties and physical design.
  2. Understanding the role of material constitutive behavior on stress buildup.
  3. Develop methodology for computing stress levels in a structure given material properties, physical design and manufacturing process steps.
  4. Use knowledge of stress state to anticipate potential failure modes of structure.

INTENDED AUDIENCE

Scientific, technical and engineering staff in the following areas:

COURSE REQUIREMENTS

Knowledge of vector calculus up to and including differential equations. Basic background in strength of materials concepts.

COURSE DURATION: 2days

COURSE OUTLINE

APPLICATIONS

  1. Stress buildup in thin coatings
  2. Coatings with defects
  3. Thin film wiring structures:
  4. Imbedded structures in silicon wafer.
  5. Interconnection technology:

BENEFITS TO THE STUDENT